<< 7.7 The Case of Several Parameters | 8.2 Uniformly Most Powerful Test >>

Recall 4.5 Introduction to Hypothesis Testing

Definition 8.1.1: Best critical region

Definition

Let : Subset of sample space

If

  1. $P_{\theta’}[\mathbf{X}\in C]=\alpha$$
  2. $ \forall A\subset C, P_{\theta’}[\mathbf{X}\in A]=\alpha\implies P_{\theta”}[\mathbf{X}\in C]\geq P_{\theta”}[\mathbf{X}\in A] $$

Then

Theorem 8.1.1: Neyman-Pearson Theorem

Theorem

Let

If for any

  1. $ \frac{L(\theta’;\mathbf{x})}{L(\theta”;\mathbf{x})} \leq k, \quad \forall \mathbf{x}\in C $$
  2. $ \frac{L(\theta’;\mathbf{x})}{L(\theta”;\mathbf{x})} \geq k, \quad \forall \mathbf{x}\in C^c $$
  3. (significance level)

Then is a best critical region of size for testing the simple hypothesis against the alternative simple hypothesis

Definition 8.1.2: Unbiased test

Definition

Let

Consider

If $ P_{\theta}(\mathbf{X}\in C) \geq \alpha, \quad \forall \theta \in \omega_{1} $$

Then we say that this test is unbiased

Corollary 8.1.1

Corollary

As in Neyman-Pearson Theorem,

Let

Then

  • $ \alpha \leq \gamma_{C}(\theta”) $$
  • The best test is an unbiased test