<< 7.7 The Case of Several Parameters | 8.2 Uniformly Most Powerful Test >>
Recall 4.5 Introduction to Hypothesis Testing
Definition 8.1.1: Best critical region
Definition
Let : Subset of sample space
If
- $P_{\theta’}[\mathbf{X}\in C]=\alpha$$
- $ \forall A\subset C, P_{\theta’}[\mathbf{X}\in A]=\alpha\implies P_{\theta”}[\mathbf{X}\in C]\geq P_{\theta”}[\mathbf{X}\in A] $$
Then
- We say is a best critical region of size for testing a simple statistical hypothesis against the alternative hypothesis
- We say the test of a best test
Theorem 8.1.1: Neyman-Pearson Theorem
Theorem
Let
- : Random sample with pdf/pmf
- : Likelihood function of
- and be distinct fixed values of so that
- : Subset of the sample space
If for any
- $ \frac{L(\theta’;\mathbf{x})}{L(\theta”;\mathbf{x})} \leq k, \quad \forall \mathbf{x}\in C $$
- $ \frac{L(\theta’;\mathbf{x})}{L(\theta”;\mathbf{x})} \geq k, \quad \forall \mathbf{x}\in C^c $$
- (significance level)
Then is a best critical region of size for testing the simple hypothesis against the alternative simple hypothesis
Definition 8.1.2: Unbiased test
Definition
Let
- : Random variable with pdf/pmf
- : Random sample on
Consider
- Hypotheses versus
- A test with critical region and significance level
If $ P_{\theta}(\mathbf{X}\in C) \geq \alpha, \quad \forall \theta \in \omega_{1} $$
Then we say that this test is unbiased
Corollary 8.1.1
Corollary
As in Neyman-Pearson Theorem,
Let
- : Critical region of the best test of versus
- : Significance level of the test
- : Power function of the test
Then
- $ \alpha \leq \gamma_{C}(\theta”) $$
- The best test is an unbiased test