<< 1.3 The Probability Set Function | 1.5 Random Variables >>

Definition 1.4.1: Conditional probability

Definition

Let

If $ P(B|A)=\frac{P(A\cap B)}{P(A)} $$

Then we say is the conditional probability of given

Moreover,

  1. If are mutually exclusive events, then $P(\cup_{n=1}^\infty B_{n}|A)=\sum_{n=1}^\infty P(B_{n}|A)$$

Theorem 1.4.1: Bayes theorem

Definition

Let

  • : Events
  • : Event

Suppose form a partition of

Then $ \begin{align} P(A_{j}|B) & = \frac{P(A_{j})P(B|A_{j})}{\sum_{i=1}^kP(A_{i})P(B|A_{i})} \ \

P(A|B) & = \frac{P(B|A);P(A)}{P(B)} \end{align}

## Definition 1.4.2: Independency ## Definition Let $A,B$ : [[3 Reference/Def-events\|Events]] If $ P(A\cap B) = P(A)P(B) $$ Then we say that $A$ and $B$ are **independent** ## See also - https://www.youtube.com/watch?v=XQoLVl31ZfQ - https://www.youtube.com/watch?v=ibINrxJLvlM - https://www.youtube.com/watch?v=OYT0AcuLXu8