<< 4.2.2 Confidence Interval for Difference in Proportion | 4.5 Introduction to Hypothesis Testing >>

Definition: Order statistics

Definition

Let : Random Sample with pdf and support

If

  • : -th smallest value of

Then we say is order statistic of

Theorem 4.4.1: Joint pdf of order statistics

Theorem

Let

  • : Random sample with
  • : order statistics of

Then the joint pdf of is

Marginal pdf of order statistics

Theorem

Let

Then marginal pdf of is given by:

The joint marginal pdf of and is given by:

CDF of order statistics

Theorem

Let

Then cdf of is given by

  • [^2]
F_{Y_{1}}(x) = 1-[1-F_{X}(x)]$$ - $Y_{k}$[^1]

F_{Y_{k}}(x) = \sum_{j=k}^n \binom n j [F_{X}(x)]^j[1-F_{X}(x)]^{n-j}

- $Y_{n}$[^2]

F_{Y_{n}}(x) = [F_{X}(x)]$$

Exercise

Example 1

Misal statistik terurut dengan .

Menggunakan Marginal pdf and of order statistics, dapat diperoleh pdf marginal sebagai berikut:

  1. pdf marginal untuk :
  1. pdf marginal untuk :

Untuk :

dan untuk lainnya.

  1. pdf marginal untuk :

Exercise 4.56 of Hogg & Craig 5th ed.

Let be the order statistics of a random sample of size 4 from the distribution having p.d.f. , zero elsewhere. Find .

We will use CDF of order statistics to solve this problem.