Maximum Likelihood Estimator (mle)

  • Definition
  • Properties
  • See also
  • Related theorems
Home

❯

mathematics

❯

Introduction to Mathematical Statistics

❯

Maximum Likelihood Estimator (mle)
  • Definition
  • Properties
  • See also
  • Related theorems

Maximum Likelihood Estimator (mle)

Oct 21, 20251 min read

Definition

Let

  • X : Observed data
  • θ : Parameter
  • L(θ;X) : Likelihood function

If θ^=ArgmaxL(θ;X)

Then θ^ is a maximum likelihood estimator (mle) of θ

Properties

The MLE has the following properties:

  1. Consistenty θ^P​θketika n→∞
  2. Asymptotic normality n​(θ^−θ)d​N(0,V) Where V is covariance matrix.
  3. Asymptotic efficiency V=I(θ)−1 Where I(θ)−1 is Rao-Cramer Lower Bound

See also

  • Finding Maximum Likelihood Estimator

Related theorems

  • Theorem 6.1.2

Recent Notes

  • pwr-bot

    Jan 18, 2026

    • 3-Tier Architecture

      Jan 13, 2026

      • N-Tier Architecture

        Jan 13, 2026

        • software architecture

          Jan 13, 2026

          • type/category
        • object oriented programming

          Jan 13, 2026

          • type/category

        Graph View

        Related notes

        • 4.2 Confidence Intervals
        • Estimator
        • Likelihood Function
        • Chapter 8 Exercises
        • Chapter 9 Exercises
        • Likelihood Ratio Test
        • Introduction to Mathematical Statistics
        • Tugas Latihan

        Created with Quartz v4.5.2 © 2026

        • GitHub
        • Discord Community