<< 3.7 *Mixture Distributions | 4.2 Confidence Intervals >>
Definition 4.1.1: Random sample
Definition
Let : Random samples of size
If are independent and identically distributed (iid)
Then we say are random samples
Definition 4.1.2: Statistic
Definition
Let : Random sample
If , function of random samples
Then we say is a statistic of
Definition: Estimator
Definition
Estimator of is a statistic used to estimate an unknown parameter .
Definition 4.1.3: Unbiased estimator
Definition
Let
- : Random samples, with
- : Parameter space
- : Statistic of
If $E(T)=\theta,\quad \forall \theta\in \Omega$$
Then we say is an unbiased estimator of
Definition: Likelihood function
Definition
Let
- : Random sample
- : Realization of
- : Parameter
- : pdf of
If
Then we say is the likelihood function of