Minimum Variance Unbiased Estimator (MVUE)

  • Definition
  • Remark
Home

❯

mathematics

❯

Introduction to Mathematical Statistics

❯

Minimum Variance Unbiased Estimator (MVUE)
  • Definition
  • Remark

Minimum Variance Unbiased Estimator (MVUE)

Oct 13, 20251 min read

Definition

Let

  • X1​,…,Xn​ : Random sample
  • Y=u(X1​,…,Xn​) : Statistic
  • θ : Parameter

If

  • Y : Unbiased estimator of θ
  • Var(Y) is lower than every other unbiased estimator of θ

Then Y is the mininum variance unbiased estimator (MVUE) of θ

Remark

We usually use Lehmann and Scheffe Theorem to prove that a statistic is MVUE.


Recent Notes

  • pwr-bot

    Jan 18, 2026

    • 3-Tier Architecture

      Jan 13, 2026

      • N-Tier Architecture

        Jan 13, 2026

        • software architecture

          Jan 13, 2026

          • type/category
        • object oriented programming

          Jan 13, 2026

          • type/category

        Graph View

        Related notes

        • Chapter 7 Exercises
        • Chapter 8 Exercises
        • 7.4 Completeness and Uniqueness
        • Introduction to Mathematical Statistics
        • Unique MVUE (UMVUE)
        • Tugas Kelompok 2

        Created with Quartz v4.5.2 © 2026

        • GitHub
        • Discord Community