<< 7.1 Measures of Quality Estimators.md | 7.3 Properties of a Sufficient Statistic.md >>

Definition 7.2.1: Sufficient statistic

Definition

Let

Then is a sufficient statistic for

If and only if

  • $ \frac{\prod_{i=1}^nf(x_{i};\theta)}{f_{Y}[u(\mathbf{x});\theta]} = H(\mathbf{x}) $$
  • does not depend upon

Theorem 7.2.1: Neyman theorem

Theorem

Let

Then is a sufficient statistic for

If and only if

  • $\exists k,l \ni L(\theta) = k[u(\mathbf{x});\theta]\cdot l(\mathbf{x})$$
  • is independent of